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• Past M3D-C1 runs often crashed due to 

numerical instability at the onset of 

physical instability

– Negative-temperature islands form on 

rational surfaces

– Current diffuses into thin sheets

– Ultimately noise in density causes crash

• New coding prevents spurious impurity 

and radiation evaluations at low Te

• M3D-C1 runs now routinely run through 

thermal (TQ) & current quenches (CQ)

– Full-CQ simulations completed for DIII-D, 

JET, and KSTAR plasmas

– Code can be run at lower diffusivities

– MHD instabilities can cause global 

stochasticization and complete TQ

– Current spikes observed in some runs

Recent Improvements to Impurity Coupling Have Increased 

Numerical Stability, Allowing Simulations Through Current Quench

Anatomy of past failed runs

Te Jφ
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DIII-D Benchmark with NIMROD
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• DIII-D 160606 @ 2990 ms: 0.7 MJ, 

1.28 MA

• 3D nonlinear MHD

– Fixed boundary

– Single-temperature equation

• Pellet/deposition parameters

– 3 mm radius, pure neon 

– 5 cm poloidal and 2.4 m toroidal 

half-width

– 200 m/s with realistic trajectory

• Ongoing work has motivated code 

development and bug fixes

• Both codes are able to run 

benchmark case stably for a range 

of parameters

3D Benchmark between M3D-C1 & NIMROD with Realistic, 

Injected Pellet is Underway (Lyons, Kim)

Example M3D-C1 Benchmark
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• Decent agreement at low D

– Similar thermal & current quenches

– Early agreement in Ne shows matching 

ablation & ionization

– NIMROD see extra, earlier instability

• Diverge more as D increases

• M3D-C1 is more stable with increasing D, 

while NIMROD is less

Benchmark Performed for a Range of Density Diffusivities
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• Decent agreement at low D

– Similar thermal & current quenches

– Early agreement in Ne shows matching 

ablation & ionization

– NIMROD see extra, earlier instability

• Diverge more as D increases

• M3D-C1 is more stable with increasing D, 

while NIMROD is less

Benchmark Performed for a Range of Density Diffusivities (D)
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• Decent agreement at low D

– Similar thermal & current quenches

– Early agreement in Ne shows matching 

ablation & ionization

– NIMROD see extra, earlier instability

• Diverge more as D increases

• M3D-C1 is more stable with increasing D, 

while NIMROD is less

Benchmark Performed for a Range of Density Diffusivities
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JET & KSTAR Single-Pellet Modeling
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• Modeling component of grant has several objectives

– Interpret recent mitigation experiments

• JET, particular high thermal energy and radiation fraction/asymmetry

• KSTAR, particularly dual, symmetric shattered-pellet injection

– Develop cross-machine database to inform ITER disruption-mitigation system

– Make predictions for additional experiments

• Equilibria reconstructed with kinetic profiles acquired for recent experiments

DOE International-Collaboration will Validate M3D-C1 and 

NIMROD against Recent JET and KSTAR SPI Experiments

JET 95707

Ip = 2.4 MA

Wth = 3.4 MJ

(Scenario 1

High Wth) 

KSTAR 26300

Ip = 0.76 MA

Wth = 0.56 MJ

R0 = 2.63818

Z0 = -0.45954

θ = 20°
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• Single-pellet simulations done for 95707 at 

50.5448 s (150 m/s, D=8.1 mm, pure-neon) 

• Typical characteristics of SPI disruption

– Radiative decay of thermal energy

– MHD event(s) cause radiation spike and rapid TQ

– Slight current spike before CQ

Single-Pellet JET Modeling Shows Complete TQ & CQ
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• Single-pellet simulations done for 95707 at 

50.5448 s (150 m/s, D=8.1 mm, pure-neon) 

• Typical characteristics of SPI disruption

– Radiative decay of thermal energy

– MHD event(s) cause radiation spike and rapid TQ

– Slight current spike before CQ

• Results qualitatively insensitive to KPRAD cutoff 

temperature and viscosity

– Slightly more radiation when either lowered

– Earlier CQ with less viscosity

• Future work

– Toroidal localization of pellet

– Convergence with toroidal planes

– Shattered pellet plume

Single-Pellet JET Modeling Shows Complete TQ & CQ
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• Single-pellet simulations done for 26300 at 

5990 ms

– 300 m/s along realistic trajectory

– Pure neon and 95% deuterium considered

• Complete TQ relatively rapid

– Radiation driven due to low Wth, high 

velocity, and large (4.6 mm) pellet

– Maybe some MHD in pure-Ne but relatively 

benign

• Future work

– Pure-deuterium?

– Dual injection

– Shattered pellet plume

Single-Pellet KSTAR Modeling Well-Underway
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• ITER Case H26: 15 MA L-mode plasma

• Initial simulations consider pencil-beam model 

(line of uniform pellet fragments)

– 95/5 D/Ne pellet

– Different fragment sizes

– Different velocities

• 2D benchmark successfully performed with NIMROD

– Confidence in both codes to explore optimization of 

pellet and shatter parameters

– Helped identify bugs and numerical challenges

• To consider

– Poloidal/toroidal spread

– Non-uniform fragment sizes

– 3D

– H-mode scenarios

SPI Characteristics Benchmarked in 2D Simulations of ITER L-mode

512 2.5-mm fragments
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• Complete 3D nonlinear benchmark with NIMROD

– What are metrics for success?

– Strong nonlinearity makes exact agreement difficult

– Chaotic evolution: small discrepancies early cause exponential deviation

– Perhaps need to benchmark qualitative behavior of physics-based scans?

• Validation with DIII-D

• Validation with JET & KSTAR

• What are the areas to focus on?

– Eidietis: pure-deuterium as timely

– Nardon & KSTAR: Vary impurity content and dual vs single injection

Plans for Future Work
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Additional slides
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• Both codes solve full, nonlinear, 3D extended MHD equations

– M3D-C1 uses a complete C1 finite-element representation

– NIMROD uses finite elements in poloidal plane and Fourier modes toroidally

• Both have been coupled to the KPRAD1 impurity model

– Low-density, coronal non-equilibrium model based on ADPAK rate coefficients

– Impurity & electron densities evolve according to ionization and recombination

– Thermal energy lost from plasma due to ionization and radiation

– NIMROD uses single-temperature, M3D-C1 uses single or two-temperature

M3D-C1 and NIMROD Extended-MHD Solvers are Coupled to 

Impurity Ionization/Radiation Models

1D.G. Whyte, et al., Proc. of the 24th Euro. Conf. on Controlled Fusion and 

Plasma Physics, Berchtesgaden, Germany, 1997, Vol. 21A, p. 1137. 


